

V Semester B.Sc. Examination, November/December 2016 (2013-14 and Onwards) (CBCS-Fresh/NS- Repeaters) PHYSICS – V

Quantum Statistical Physics, Quantum Mechanics - I and II

ime : 3 Hours Max. Marks : 70

Instruction: Answerfive questions from each Part.

PART-A

A	gh:	ver any five of the following questions. Each question carries t marks:	×8=40
1.	De	erive Bose-Einstein distribution law for bosons.	B B
2.	W	hat are fermions? Derive an expression for the probability distribution of articles governed by Fermi-Dirac statistics.	
3.	i)	coplain briefly the failure of classical theory in the explanation of : Stability of an atom. Blackbody radiation.	(4+4)
4.	a)	Explain phase velocity and group velocity for a matter wave.	
		Establish a relation between the particle velocity and group velocity of a ne relativistic particle.	on (3+5)
5.	a)	With a neat diagram, describe gamma-ray microscope experiment to illustrathe Heisenberg's uncertainty principle.	te
	b)	Show that electrons cannot remain inside a nucleus using uncertainty principle.	(6+2)
3.	a)	Mention any two conditions that a wave function must satisfy.	
		Arrive at Schrödinger's time independent equation for a free particle in one dimension. Write the equation for three dimensions.	(2+6)

- Set up Schrödinger equation for a particle in a one dimensional box and solve to obtain eigen values of energy. Also represent the first three wave functions graphically.
- 8. Develop the Schrödinger's equation for a linear harmonic oscillator. Mention the energy eigen value expression.

PART-B

Solve **any five** of the following problems. **Each** problem carries **four** marks : (5×4) Use $h = 6.63 \times 10^{-34}$ JS, $m_e = 9.1 \times 10^{-31}$ kg and $e = 1.6 \times 10^{-19}$ C wherever necessary.

- 9. A system of 5 particles are arranged in two compartments. The first compartment is divided into 6 cells and the property of 5 cells. The cells are a equal size. Calculate the number of microstates in the macrostate (2, 3), if the particles obey Fermi-Dirac statistics.
- A gas has two particles A and B. Show with the help of diagrams how these
 particles can be arranged in three different quantum states 1, 2, 3 using Bose
 Einstein statistics.
- 11. The Fermi energy for lithium is 4.72 eV at T = 0K. Calculate the number of conduction electrons per unit volume in lithium.
- 12. Calculate the frequency and energy in eV of a photon of wavelength 400 nm
- 13. Calculate the deBroglie wavelength of neutron of energy 28.8 eV. Given $m_n = 1.67 \times 10^{-27}$ kg, $h = 6.63 \times 10^{-34}$ Js.
- 14. A microscope using photons is employed to locate an electron in an atomitted within a distance of 0.1 Å. Calculate the uncertainty in the momentum of electron located.
- An electron is trapped inside a box of 1 nm. Calculate the first three eigen in eV.
- 16. The energy of a linear harmonic oscillator in its third excited state is 0.1 excited calculate the frequency and zero point energy.

PART-C

Answer any five of the following questions. Each question carries two marks: (5×2=10)

- 17. a) Can an electron have zero energy at T = 0K ? Explain.
 - b) Does Fermi energy depends on temperature ? Explain.
 - c) An electron and proton are possessing same amount of kinetic energy. Which of the two have greater deBroglie wavelength? Justify.
 - d) We do not experience the existence of matter waves in our day-to-day life. Why?
 - e) Can matter waves move faster than light ? ExpIBMSCW
 - f) Why do we normalise a wave function? Explain.
 - g) Distinguish between a particle in a box and a free particle.
 - h) Can the quantum number n be zero for a particle in a one dimensional box ?

 Justify.